Chem. Ber. 104, 528-532 (1971)

Wolfgang Beck, Peter Kreutzer und Konrad v. Werner

Ein einfacher Weg zu azidverbrückten Palladium- und Platin(II)-Komplexen 1)

Aus dem Institut für Anorganische Chemie der Universität München (Eingegangen am 30. Oktober 1970)

Salze der azidverbrückten dimeren Kationen

$$[(Ph_3P)_2M \stackrel{N_3}{\searrow} M(PPh_3)_2]X_2$$
 (M = Pd, Pt; X = ClO₄, BF₄, PF₆, ÄtOSO₃)

entstehen in praktisch quantitativer Ausbeute durch Umsetzung der monomeren Diazidokomplexe (Ph₃P)₂M(N₃)₂ mit Nitrosyl- oder Triäthyloxonium-Salzen bzw. mit Diäthylsulfat.

A Simple Pathway to Azide-Bridged Palladium and Platinum(II) Complexes 1)

Salts of azide-bridged dimeric cations

$$[(Ph_3P)_2M {\stackrel{N_3}{\searrow}} M(PPh_3)_2] X_2 \ (M = Pd, \ Pt; \ X = ClO_4, \ BF_4, \ PF_6, \ \ddot{A}tOSO_3)$$

are prepared in quantitative yields by reaction of the monomeric diazido complexes $(Ph_3P)_2M(N_3)_2$ with nitrosyl- or triethyloxonium salts, and diethyl sulfate, respectively.

.

Im Rahmen unserer Arbeiten über Reaktionen an koordinierten Liganden, speziell an der Azidgruppe $^{2)}$, untersuchten wir die Umsetzungen der phosphinhaltigen Azidokomplexe $(Ph_3P)_2M(N_3)_2$ (M=Pd,Pt) mit dem Nitrosyl-Ion, sowie mit Alkylierungsmitteln.

Die bereits früher durch Umsetzung von [Pt(N₃)₄]²⁻ mit Triphenylphosphin erhaltene Platin(II)-Verbindung (Ph₃P)₂Pt(N₃)₂ ^{3a)} erwies sich auf Grund von Dipolmoments- und ³¹P-NMR-Messungen als das *cis*-Isomere, das auch aus dem Carbonatokomplex (Ph₃P)₂PtCO₃ und HN₃ sowie aus *cis*-(Ph₃P)₂PtCl₂ und NaN₃ dargestellt wurde. Dagegen liegt der Palladium-Komplex (Ph₃P)₂Pd(N₃)₂ in Lösung als Gemisch des *trans*- und *cis*-Isomeren vor ^{3b)}.

Nach Arbeiten von Seel⁴⁾ reagiert das Nitrosyl-Kation NO⁺ mit dem freien Azid-Ion unter Bildung von Stickstoff und Distickstoffoxid. Bei der Umsetzung von NO⁺-

XXXIII. Mitteil. über Pseudohalogeno-Metallverbindungen; XXXII. Mitteil.: W. Beck, P. Swoboda, K. Feldl und E. Schuierer, Chem. Ber. 103, 3591 (1970).

²⁾ W. Beck und W. P. Fehlhammer, Angew. Chem. 79, 146 (1967); Angew. Chem. internat. Edit. 6, 169 (1967); W. Beck, W. P. Fehlhammer, P. Pöllmann und H. Schächl, Chem. Ber. 102, 1976 (1969); W. Beck, W. P. Fehlhammer, H. Bock und M. Bauder, ebenda 102, 3637 (1969).

^{3) 3}a) W. Beck, W. P. Fehlhammer, P. Pöllmann, E. Schuierer und K. Feldl, Chem. Ber. 100, 2335 (1967); W. Beck, W. P. Fehlhammer, P. Pöllmann und H. Schächl, ebenda 102, 1976 (1969); 3b) W. Beck und P. Kreutzer, Proceedings XIIIth International Conference on Coordination Chemistry 1970, Bd. I, S. 270.

⁴⁾ F. Seel und J. Nógrádi, Z. anorg. allg. Chem. 264, 311 (1951); F. Seel, Angew. Chem. 68, 272 (1956).

Salzen mit komplexgebundenem Azid erschien daher die Bildung von N₂- oder N₂O-Komplexen möglich⁵⁾. So konnte vor kurzem auf diesem Wege ein Stickstoffkomplex von Ruthenium erhalten werden⁶⁾. Die Reaktionen von Diazido-bis(triphenylphosphin)-palladium(II) und -platin(II) verlaufen jedoch rasch und quantitativ unter Bildung der azidverbrückten Kationen, die auch mit Bortrifluorid zugänglich sind ⁷⁾:

Es erfolgt somit eine Azidabstraktion⁸⁾; der primär anzunehmende koordinativ ungesättigte Monoazidokomplex dimerisiert sich zum stabilen zweikernigen Kation.

Taube und Mitarbb.⁵⁾ konnten am Beispiel der Reaktion von $[Co(NH_3)_5N_3]^{2+}$ mit NO^+ zeigen, daß diese Umsetzung zur Einführung neuer Liganden geeignet ist, d. h. der Azidligand ist zusammen mit NO^+ eine ausgezeichnete "leaving group", die durch neue Liganden ersetzt werden kann.

Die Reaktion des Diazidokomplexes $(Ph_3P)_2Pd(N_3)_2$ mit Isoamylnitrit führt zum Dinitrokomplex $(Ph_3P)_2Pd(NO_2)_2$; bei längerer Reaktionsdauer entsteht die Nitratoverbindung $(Ph_3P)_2Pd(NO_3)_2$. Diese Komplexe entstehen auch bei der Umsetzung von $(Ph_3P)_2Pd(N_3)_2$ mit NO bzw. NO_2^{7} .

Bei organischen und Silyl-Aziden erfolgt der elektrophile Angriff z. B. von H^+ oder einer Lewis-Säure (AlR₃, SbCl₅, R⁺) stets am elektronenreicheren α -Stickstoffatom der Azidgruppe^{9,10)}. Dies stimmt mit der Orientierung von asymmetrisch substituierten Dipolarophilen bei Cycloadditionen organischer Azide überein¹¹⁾. Auch die Addition des Protons an $[Co(NH_3)_5N_3]^{2+}$ unter Bildung von $[Co(NH_3)_5HN_3]^{3+}$ erfolgt am α -N-Atom ¹²⁾. Die Reaktion von Triäthyloxoniumsalzen mit den phosphinhaltigen Palladium- und Platinaziden führt zu den oben beschriebenen N_3 -verbrückten dimeren Kationen, gemäß:

$$\begin{array}{lll} 2 \ (\mathrm{Ph_3P})_2 \mathrm{M(N_3)_2} \ + \ 2 \ \mathrm{\ddot{A}t_3O^+} \ \mathrm{X^-} & \xrightarrow{20^\circ} & \mathrm{[(Ph_3P)_2 M(N_3)_2 M(PPh_3)_2]^{2+}} \ 2 \ \mathrm{X^-} \\ \mathrm{(M = Pd, Pt; X = BF_4^-, SbCl_6^-)} & + \ 2 \ \mathrm{\ddot{A}t_2O} \ + \ 2 \ \mathrm{\ddot{A}t_3O} \\ \end{array}$$

⁵⁾ R. B. Jordan, A. M. Sargeson und H. Taube, Inorg. Chem. 5, 1091 (1966).

⁶⁾ P. G. Douglous, R. D. Feltham und H. G. Metzger, Chem. Commun. 1970, 889.

⁷⁾ W. P. Fehlhammer, W. Beck und P. Pöllmann, Chem. Ber. 102, 3903 (1969).

⁸⁾ Bei Anwendung eines Überschusses an NO+-Salzen wird das gesamte Azid eliminiert; W. P. Fehlhammer, Dissertation, Techn. Hochschule München 1968.

N. Wiberg und K. H. Schmid, Angew. Chem. 76, 380, 381 (1964); N. Wiberg und W.-Ch. Joo, Chem. Ber. 100, 741, 748 (1967); J. organomet. Chem. 22, 333, 341, 349 (1970).

¹⁰⁾ G. L'Abbe, Chem. Reviews 69, 345 (1969).

¹¹⁾ R. Huisgen, Angew. Chem. 75, 612 (1964); R. Huisgen und G. Szeimies, Chem. Ber. 98, 1153 (1965).

¹²⁾ F. Monacelli, G. Mattogno, D. Gattegno und M. Maltese, Inorg. Chem. 9, 686 (1970).

Wie mit Nitrosylsalzen verläuft die Umsetzung unter milden Bedingungen und praktisch quantitativ. Bei höherer Temperatur entstehen die dimeren Kationen mit ROSO₃-als Anion auch aus den monomeren Azidokomplexen und Dialkylsulfat. Ebenso konnte bei der Einwirkung von starken Säuren wie HClO₄, HBF₄ (in Wasser/Methylenchlorid), deren korrespondierende Basen "schwache" Liganden darstellen, die Bildung dieser Kationen nachgewiesen werden.

Der Verlauf der Reaktion von $(Ph_3P)_2Pd(N_3)_2$ mit Ät₃OBF₄ wurde bei -78° IR-spektroskopisch verfolgt. Danach kann man annehmen, daß das Oxonium-Ion am α -N-Atom eines Azidliganden angreift; eine bei 2141/cm auftretende $\nu_{as}N_3$ -Bande, die bei höherer Temperatur wieder verschwindet, ordnen wir der alkylierten Zwischenstufe mit N-Diazoniumstruktur zu:

$$Pd \xrightarrow{N_3} + \ddot{A}t_3O^+ \xrightarrow{langsam, -78^{\circ}} Pd \xrightarrow{N_3} \xrightarrow{rasch, 20^{\circ}} \frac{1}{2} \left[Pd \xrightarrow{N_3} \right]_2^{2+}$$

Tab. 1. IR-Absorptionen [cm⁻¹] der azidverbrückten Komplexe (fest in KBr oder Nujol)

[(Ph ₃ P) ₂ M(N ₃) ₂ M(PPh ₃) ₂] X ₂	$v_{as}N_3$	$\nu_s N_3$	^y Anion		
$M = Pd; X = ClO_4$	2079 st	1256 st	1088 sst (b)		
BF ₄	2079 st	1260 st	1059 sst (b)		
PF_6	2079 st	1259 st	835 sst (b)		
ÄtÕSO3	2077 st	1279 m	1235 sst		
$M = Pt$: $X = ClO_4$	2092 st	1235 m	1089 sst (b)		
BF₄	2102 st	1237 m	1059 sst (b)		

Die mit Ausnahme der Perchlorat-Salze nicht explosiven Verbindungen $[(Ph_3P)_2M(N_3)_2M(PPh_3)_2]X_2$ zeigen im IR-Spektrum die für Azid-Brücken charakteristischen $\nu_{as}N_3$ -Banden bei 2080—2100/cm. Das dimere Anion $[(N_3)_2Pd(N_3)_2Pd(N_3)_2]^{2-3}$ wurde inzwischen röntgenographisch untersucht und eine Brückenstruktur gemäß

festgestellt¹³⁾. Da alle bisher von uns dargestellten azidverbrückten Komplexe die $v_{as}N_3$ -Absorptionen der Azid-Brücken bis 2080/cm aufweisen, erscheint diese Art der Verknüpfung über das α -N-Atom ("N-Diazonium-Brücke") auch für die hier untersuchten dimeren Kationen sowie für Dimethylgoldazid (CH₃)₂Au(N₃)₂Au(CH₃)₂ und (Ph₃P)(N₃)M(N₃)₂M(N₃)(PPh₃) (M = Pd, Pt)¹⁴) gesichert.

¹³⁾ W. P. Fehlhammer und L. F. Dahl, persönliche Mitteil.

¹⁴⁾ W. Beck, W. P. Fehlhammer, P. Pöllmann und R. S. Tobias, Inorg. chim. Acta 2, 467 (1968).

Bei der Reaktion der phosphinhaltigen Azidokomplexe von Kupfer(I) und Silber-(I)³⁾ mit Oxoniumsalzen entstehen erwartungsgemäß die azidfreien, koordinativ ungesättigten Kationen:

$$\begin{array}{lll} (Ph_3P)_2MN_3 + \ddot{A}t_3O^+ \ BF_4^- & ---- & (Ph_3P)_2M^+ \ BF_4^- + \ddot{A}tN_3 + \ddot{A}t_2O \\ (M = Cu^I, \ Ag^I) & \end{array}$$

Alkylhalogenide setzen sich mit dem Diazidokomplex (Ph₃P)₂Pd(N₃)₂ unter Substitution von Azid durch Halogenid um; mit Äthyljodid entsteht quantitativ das rote Dijodid (Ph₃P)₂PdJ₂.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Förderung unserer Arbeiten. Den Herren cand. chem. J. Erbe und A. Litzke danken wir für wertvolle Mitarbeit.

Beschreibung der Versuche

Die Umsetzungen wurden – zum Ausschluß von Feuchtigkeit – in N_2 -Atmosphäre und mit trockenen, N_2 -gesättigten Lösungsmitteln durchgeführt.

Darstellung der Di-µ-azido-tetrakis(triphenylphosphin)-dipalladium- und -platin(II)-Salze

- a) Mit Nitrosylsalzen: I mMol $(Ph_3P)_2Pd(N_3)_2^{3)}$ (0.7 g) bzw. I mMol $(Ph_3P)_2Pt(N_3)_2^{3)}$ (0.8 g) werden in 50 ccm absol. Methylenchlorid gelöst und mit 1 mMol des entsprechenden Nitrosylsalzes (117 mg NOBF₄, 175 mg NOPF₆, 130 mg NOClO₄) versetzt. Nach etwa 2 Stdn. ist die anfangs heftige Gasentwicklung beendet. Man filtriert und fällt mit absol. Äther. Umkristallisieren aus Chloroform oder Methylenchlorid/Äther ergibt hellgelbe (Pd) bzw. farblose (Pt) Kristalle in nahezu quantitativer Ausbeute, die sich in CH₂Cl₂ und CHCl₃ mäßig gut lösen. Die Perchlorat-Salze zersetzen sich beim Erhitzen explosionsartig.
- b) Mit Triäthyloxoniumsalzen: Zu einer Lösung von 1 mMol $(Ph_3P)_2Pd(N_3)_2$ (0.7 g) bzw. 1 mMol $(Ph_3P)_2Pt(N_3)_2$ (0.8 g) in 30 ccm Methylenchlorid wird die äquimolare Menge des Oxoniumsalzes (190 mg $\ddot{A}t_3OBF_4$ bzw. 440 mg $\ddot{A}t_3OSbCl_6$) in wenigen ccm CH₂Cl₂ unter Rühren zugetropft. Nach 2 Stdn. wird die Lösung auf etwa $^1/_3$ des Volumens im Wasserstrahlvak. (mit Trockenrohr) eingeengt und auf 0° abgekühlt. Die anfallenden Kristalle sind nach Trocknen am Hochvak. analysenrein.
- c) Mit Diäthylsulfat: 358 mg (0.5 mMol) $(Ph_3P)_2Pd(N_3)_2$ werden in 5 ccm frisch dest. Diäthylsulfat suspendiert und 24 Stdn. bei 50° gerührt. Das hellgelbe Produkt wird abgesaugt, mit Äther gewaschen, getrocknet und zweimal aus $CH_2Cl_2/Pentan$ umkristallisiert.

Dinitro-bis(triphenylphosphin)-palladium(II): 0.35 g (0.5 mMol) (Ph₃P)₂Pd(N₃)₂ werden in möglichst wenig CH₂Cl₂, CHCl₃ oder Benzol gelöst und mit 10 ccm Isoamylnitrit versetzt. Nach 2-4 Stdn. (bei 20°) erhält man farblose Kristalle, die mit CHCl₃ oder CH₂Cl₂ gewaschen werden und in den gebräuchlichen organischen Lösungsmitteln schwerlöslich sind. IR (fest in KBr): 1414 st (v_{as}NO₂), 1324 st (v_sNO₂), 818 st (vNO₂).

Dinitrato-bis(triphenylphosphin)-palladium(II): Eine Suspension von $0.4 \,\mathrm{g}$ ($Ph_3P)_2Pd(NO_2)_2$ in 10 ccm Isoamylnitrit wird 20 Stdn. (bei 20°) stehengelassen, wobei sich der farblose Bodenkörper nach gelb verfärbt. Man filtriert und kristallisiert aus CH_2Cl_2/\ddot{A} ther um. Gelbe Kristalle, die sich in CH_2Cl_2 und $CHCl_3$ gut lösen.

IR (fest in KBr): 1484 st, 1268 st, 990 st (vNO₃).

Dijodo-bis(triphenylphosphin)-palladium(II): 100 mg (0.14 mMol) $(Ph_3P)_2Pd(N_3)_2$ werden in 1 ccm frisch dest. Äthyljodid suspendiert und 12 Stdn. bei 50° gerührt. Der leuchtend rote Dijodo-Komplex wird abgesaugt und mit Äther gewaschen. Die Substanz wurde durch IR-Spektrum und Schmelzpunkt (278–279°, Zers.) identifiziert.

Bis(triphenylphosphin)-kupfer(I)- und -silber(I)-tetrafluoroborat: $0.5 \,\mathrm{mMol} \,(Ph_3P)_2CuN_3^{\,3a)}$ (0.32 g) bzw. $(Ph_3P)_2AgN_3^{\,3a)}$ (0.34 g) werden in 10 ccm Methylenchlorid gelöst und unter Rühren mit 100 mg $\ddot{A}t_3OBF_4$ versetzt. Im Falle der Silberverbindung werden dabei geringe Mengen Ag abgeschieden. Nach 2 Stdn. wird filtriert und mit Äther gefällt. Reinigung durch Umkristallisieren aus $CH_2Cl_2/Pentan$.

Tab. 2. Analysenwerte der dargestellten Verbindungen

Verbindung	MolGew.	Ber.	C Gef.		H Gef.		N Gef.
	1544.9	55.97	55.46				
$\{[(C_6H_5)_3P]_2PdN_3\}_2(BF_4)_2$	1519.7	56.91	56.37	3.98	4.05	5.53	5.55
$\{[(C_6H_5)_3P]_2PdN_3\}_2(PF_6)_2$	1636.0	52.86	52.14	3.70	3.98	5.14	4.96
$\{[(C_6H_5)_3P]_2PdN_3\}_2(C_2H_5OSO_3)_2$	1596.3	57.20	56.27	4.43	4.59	5.27	5.26
$\{[(C_6H_5)_3P]_2PtN_3\}_2(ClO_4)_2$	1722.3	50.21	50.08	3.51	3.70	4.88	4.83
$\{[(C_6H_5)_3P]_2PtN_3\}_2(BF_4)_2$	1697.0	50.96	50.46	3.56	3.55	4.95	4.87
$[(C_6H_5)_3P]_2Pd(NO_2)_2$	723.0	59.79	59.24	4.18	4.38	3.87	3.64
$[(C_6H_5)_3P]_2Pd(NO_3)_2$	755.0	57.27	57.45	4.01	4.13	3.71	3.45
$\{[(C_6H_5)_3P]_2Cu\}BF_4$	674.9	64.01	62.81	4.48	4.53		
$\{[(C_6H_5)_3P]_2Ag\}BF_4$	719.3	60.12	61.5	4.20	4.40		

[378/70]